Obtención de fibra dietética de las cascarillas de Vicia faba L. cruda y tostada por método Enzimático-Gravimétrico

  • Yolanda Callo Choquevilca Departamento Académico de Química, Facultad de Ciencias, Universidad Nacional de San Antonio Abad del Cusco. Av. de la Cultura 733, Cusco-Perú
Palabras clave: Vicia faba L, fibra dietética, cascarilla de habas, Método enzimático-gravimétrico

Resumen

Al investigar las cascarillas de Vicia faba L. se evaluó el rendimiento en fibra dietética insoluble y soluble como también la variación de sus propiedades fisicoquímicas dependiendo de su estado crudo o tostado. Su extracción, siguió el método enzimático-gravimétrico utilizando las enzimas α-amilasa, amiloglucosidasa y proteasa. Los resultados demuestran que la cascarilla cruda tiene mayor fibra dietética insoluble (FDI) con 72,28% frente a 60,94% de la cascarilla tostada, con una significancia estadística de p<0,05. El % de fibra dietética soluble (FDS) de las cascarillas cruda y tostada con 19,73% y 24,14% respectivamente, y el % de fibra dietética total de la cascarilla cruda y tostada (FDT-C y FDT-T), no son estadísticamente diferentes. Las propiedades de capacidad de hidratación y captación de aceite de la FDI-C y FDI-T son estadísticamente diferentes, siendo mayor para FDI-C, mientras que, la capacidad de hinchamiento es similar en FDI-C y FDI-T. La cantidad de azúcares solubles en FDS-T (27,56 %) es mayor que en FDS-C (16,89 %). Los espectros FT-IR de la FDS-C y FDS-T, coinciden en bandas de absorción ubicadas entre 1300 cm-1-700 cm-1 característico de vibraciones por estiramiento de los grupos C-O, COH, C-C y C-H propio de carbohidratos, con variaciones en la intensidad de los picos para la FDSC y FDS-T. Se concluye que el tostado de las cascarillas de Vicia faba L genera cambios fisicoquímicos, haciendo disminuir la cantidad de fibra dietética insoluble y aumentar la fibra dietética soluble, con buenas propiedades tecnofuncionales que favorecería su utilización en la alimentación.

Descargas

La descarga de datos todavía no está disponible.

Citas

Ahmad, S., & Khan, I. (2020). Role of Dietary Fibers and Their Preventive Measures of Human Diet. En S. Ahmad & N. A. Al-Shabib (Eds.), Functional Food Products and Sustainable Health (pp. 109-130). Springer. https://doi.org/10.1007/978-981-15-4716-4_8

Albalasmeh, A. A., Berhe, A. A., & Ghezzehei, T. A. (2013). A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry. Journal Carbohydrate Polymers, 97(2), 253-261. https://doi.org/10.1016/j.carbpol.2013.04.072

Anjos, O., Campos, M., Ruiz, P., & Antunes, P. (2015). Application of FTIR-ATR spectroscopy to the quantification of sugar in honey. Food Chemistry, 169, 218-223. https://doi.org/10.1016/j.foodchem.2014.07.138

Asghari, F. S. A., & Yoshida*, H. (2006). Acid-Catalyzed Production of 5-Hydroxymethyl Furfural from D-Fructose in Subcritical Water. Industrial and Engineering Chemistry Research, 45(7), 2163-2173. https://doi.org/10.1021/ie051088y

Bai, X., He, Y., Quan, B., Xia, T., Zhang, X., Wang, Y., Zheng, Y., & Wang, M. (2022). Physicochemical properties, structure, and ameliorative effects of insoluble dietary fiber from tea on slow transit constipation. Food Chemistry: X, 14, 100340. https://doi.org/10.1016/j.fochx.2022.100340

Çalışkantürk Karataş, S., Günay, D., & Sayar, S. (2017). In vitro evaluation of whole faba bean and its seed coat as a potential source of functional food components. Food Chemistry, 230, 182-188. https://doi.org/10.1016/j.foodchem.2017.03.037

Cortez, P. M. (2020). La espectroscopia aplicada al análisis de alimentos y bebidas. Repositorio CIATEJ.

Cruz, A., Guamán, M., Castillo, M., Glorio, P., & Martínez, R. (2015). Fibra dietaria en subproductos de mango, maracuyá, guayaba y palmito. Revista Politécnica, 36(2), Article 2.

Dai, F.-J., & Chau, C.-F. (2017). Classification and regulatory perspectives of dietary fiber. Journal of Food and Drug Analysis, 25(1), 37-42. https://doi.org/10.1016/j.jfda.2016.09.006

DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (2002). Colorimetric Method for Determination of Sugars and Related Substances (world) [Research-article]. ACS Publications; American Chemical Society. https://doi.org/10.1021/ac60111a017

Elmståhl, H. (2002). Resistant starch content in a selection of starchy foods on the Swedish market. European journal of clinical nutrition, 56, 500-505. https://doi.org/10.1038/sj.ejcn.1601338

Food and Agriculture Organization (FAO). (2014). Definitional Framework of Food Losses and Waste. FAO Rome, Italy.

Hua, M., Lu, J., Qu, D., Liu, C., Zhang, L., Li, S., Chen, J., & Yinshi, S. (2019). Structure, physicochemical properties and adsorption function of insoluble dietary fiber from ginseng residue: A potential functional ingredient. Journal Food Chemistry, 286, 522-529. https://doi.org/10.1016/j.foodchem.2019.01.114

Huang, S.-C., Liao, T.-S., Cheng, T.-C., Chan, H.-Y., Hwang, S.-M., & Hwang, D.-F. (2020). In vitro interactions on glucose by different fiber materials prepared from mung bean hulls, rice bran and lemon pomace. Journal of Food and Drug Analysis, 17(4). https://doi.org/10.38212/2224-6614.2599

Hussain, S., Jõodu, I., & Bhat, R. (2020). Dietary Fiber from Underutilized Plant Resources—A Positive Approach for Valorization of Fruit and Vegetable Wastes. Sustainability, 12(13), Article 13. https://doi.org/10.3390/su12135401

Kacuráková, M. (2000). FT-IR study of plant cell wall model compounds: Pectic polysaccharides and hemicelluloses. Carbohydrate Polymers, 43(2), 195-203. https://doi.org/10.1016/S0144-8617(00)00151-X

Karaman, E., Yılmaz, E., & Tuncel, N. B. (2017). Physicochemical, microstructural and functional characterization of dietary fibers extracted from lemon, orange and grapefruit seeds press meals. Bioactive Carbohydrates and Dietary Fibre, 11, 9-17. https://doi.org/10.1016/j.bcdf.2017.06.001

Krenz, L. M. M., Grebenteuch, S., Zocher, K., Rohn, S., & Pleissner, D. (2023). Valorization of faba bean (Vicia faba) by-products. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-023-03779-9

Lettow, M., Grabarics, M., Mucha, E., Thomas, D. A., Polewski, Ł., Freyse, J., Rademann, J., Meijer, G., Von Helden, G., & Pagel, K. (2020). IR action spectroscopy of glycosaminoglycan oligosaccharides. Analytical and Bioanalytical Chemistry, 412(3), 533-537. https://doi.org/10.1007/s00216-019-02327-7

Li, S., Hu, N., Zhu, J., Zheng, M., Liu, H., & Liu, J. (2022). Influence of modification methods on physicochemical and structural properties of soluble dietary fiber from corn bran. Food Chemistry: X, 14, 100298.

López-Legarda, X., Taramuel-Gallardo, A., Arboleda, C., Segura-Sánchez, F., & Restrepo-Betancur, E. L. F. (2017). Comparación de métodos que utilizan ácido sulfúrico para la determinación de azúcares totales. Revista Cubana de Química, 29(2), 180-198. http://ojs.uo.edu.cu/index.php/cq

Luo, X., Wang, Q., Zheng, Y., & Xiao, J. (2017). Hydration properties and binding capacities of dietary fibers from bamboo shoot shell and its hypolipidemic effects in mice. Food and chemical toxicology, 109, 1003-1009. https://doi.org/10.1016/j.fct.2017.02.029

Marconi, E., Ruggeri, S., Cappelloni, M., Leonardi, D., & Carnovale, E. (2000). Physicochemical, Nutritional, and Microstructural Characteristics of Chickpeas (Cicer arietinum L.) and Common Beans (Phaseolus vulgaris L.) Following Microwave Cooking. Journal of Agricultural and Food Chemistry, 48(12), 5986-5994. https://doi.org/10.1021/jf0008083

Masood, F., Haque, A., Ahmad, S., & Malik, A. (2020). Potential of Food Processing By-products as Dietary Fibers. En S. Ahmad & N. A. Al-Shabib (Eds.), Functional Food Products and Sustainable Health (pp. 51-67). Springer. https://doi.org/10.1007/978-981-15-4716-4_5

McCleary, B. V., DeVries, J. W., Rader, J. I., Cohen, G., Prosky, L., Mugford, D. C., Champ, M., & Okuma, K. (2012). Determination of Insoluble, Soluble, and Total Dietary Fiber (CODEX Definition) by Enzymatic-Gravimetric Method and Liquid Chromatography: Collaborative Study. Journal of AOAC INTERNATIONAL, 95(3), 824-844. https://doi.org/10.5740/jaoacint.CS2011_25

Mertens, D. R. (2003). Challenges in measuring insoluble dietary fiber. Journal of Animal Science, 81(12), 3233-3249. https://doi.org/10.2527/2003.81123233x

Morales M, M. (2014). Obtención de un polvo instantáneo por atomización a partir del extracto de la cáscara de la haba (Vicia faba) Tostada. Universidad Nacional San Cristobal de Huamanga.

Niu, Y., de Huicheng, C., Huo, T., Sun, X., Gong, Q., & Yu, L. (2020). A novel fat replacer composed by gelatin and soluble dietary fibers from black bean coats with its application in meatballs. LWT-food Science and Technology, 122(109000). https://doi.org/10.1016/j.lwt.2019.109000

Orcón, G. V. (2023). Propiedades funcionales de la fibra dietaria de cáscara de habas (Vicia faba) en ratas Holtzman sometidas a estreñimiento [Tesis para optar el Grado de Magíster]. Universidad Nacional Agraria la Molina.

Raghavendra, S. N., Rastogi, N. K., Raghavarao, K. S. M. S., & Tharanathan, R. N. (2005). Physico-chemical properties of dietary fiber from jackfruit seeds and their functional potential in food systems. Food Research International, 38(3), 305-309. https://doi.org/10.1016/j.foodres.2004.09.011

Roh, S., & Choi, C. (2019). Isolation and Characterization of Dietary Fibers from Undervalued Agricultural by-products. Molecules, 24(6), 1078-1091. https://doi.org/10.3390/molecules24061078

Sarantopoulos, C. P., & Rocha, J. M. (2020). Extraction of dietary fibers from non-traditional sources. In S. Ahmad & N. A. Al-Shabib (Eds.), Functional Food Products and Sustainable Health (pp. 127-147). Springer. https://doi.org/10.1007/978-981-15-4716-4_9

Sun, J., Li, D., He, J., & Zeng, Q. (2020). Effect of dietary fiber from papaya on the cholesterol metabolism in hyperlipidemic rats. Foods, 9(12), Article 1718. https://doi.org/10.3390/foods9121718

Tappi, S. (2015). The biochemical composition of dietary fibers and their impact on human health. Food Chemistry, 195, 1-10. https://doi.org/10.1016/j.foodchem.2015.07.095

Tesi, L., & Serra, F. (2006). Determination of total, soluble and insoluble dietary fiber using a gravimetric method: Application to different food categories. Journal of Food Science, 71(2), C143-C149. https://doi.org/10.1111/j.1750-3841.2006.00261.x

Yang, J., Liu, Y., & Liu, X. (2020). Physicochemical properties and structure of dietary fibers from corn fiber and their effect on constipation. Food Chemistry: X, 8, 100071. https://doi.org/10.1016/j.fochx.2020.100071

Zohary, D., & Hopf, M. (2000). Domestication of Plants in the Old World: The Origin and Spread of Cultivated Plants in West Asia, Europe, and the Mediterranean. Oxford University Press.

Publicado
2024-07-19
Cómo citar
Callo Choquevilca, Y. (2024). Obtención de fibra dietética de las cascarillas de Vicia faba L. cruda y tostada por método Enzimático-Gravimétrico. Q’EUÑA, 15(1), 7-14. https://doi.org/10.51343/rq.v15i1.1442
Sección
Manuscritos originales