Microplásticos em efluentes de estações de tratamento de efluentes lançados em águas superficiais: revisão sistemática
Resumo
La prevalencia del plástico impacta las fuentes de aguas superficiales, lo cual es visto a través de reportes de concentraciones de microplásticos (MPs) en efluentes finales de Plantas de Tratamiento de Aguas Residuales (PTARs). El objetivo de la presente revisión fue analizar los niveles de concentración de MPs en estos efluentes alrededor del mundo, utilizando bases de datos como Springerlink, ScienceDirect y ACS Publications. Seleccionando 51 estudios publicados entre los años 2018 y 2023. Los más altos niveles de MPs en sus efluentes se encuentran en rangos de 49428 MPs/L a 182x106 MPs/L. Aunque existen estudios en donde se cuantifica concentraciones <1 MPs/L, diferentes estudios de una misma región pueden variar las concentraciones desde rangos de 0.044 a 1030 MPs/L. Además, se mencionan factores potencialmente influyentes en estas concentraciones, como los procesos de las PTARs, las metodologías de estudio, las actividades realizadas en la región, y otros como el clima y densidad poblacional, que necesitan de más pruebas para demostrar su impacto. El 41% de los estudios recalcan que aún con cifras bajas de MPs en los efluentes, estas se vuelven significativas, por los altos volúmenes descargados continuamente por las PTARs considerándolos una vía de contaminación importante.
Downloads
Referências
Akarsu , C., Kumbur , H., Gökdağ , K., Kıdeyş, A. E., & Sanchez-VidaL, A. (2020). Microplastics composition and load from three wastewater treatment plants discharging into Mersin Bay, north eastern Mediterranean Sea. Marine Pollution Bulletin, 150. https://doi.org/10.1016/j.marpolbul.2019.110776
Akdemir, T., & Gedik, K. (2023). Microplastic emission trends in Turkish primary and secondary municipal wastewater treatment plant effluents discharged into the Sea of Marmara and Black Sea. Environmental Research, 231. https://doi.org/https://doi.org/10.1016/j.envres.2023.116188
Alavian, S. S., Hossein , S., & van Gestel, C. A. (2020). Factors affecting microplastic retention and emission by a wastewater treatment plant on the southern coast of Caspian Sea. Chemosphere, 261. https://doi.org/https://doi.org/10.1016/j.chemosphere.2020.128179
Alvim, C. B., Mendoza-Roca, J. A., & Bes-Pía, A. (2020). Wastewater treatment plant as microplastics release source – Quantification and identification techniques. Journal of Environmental Management, 255. 109893. https://doi.org/10.1016/j.jenvman.2019.109893
Bao, R., Wang , Z., Qi , H., Mehmood, T., Cai, M., Zhang , Y., . . . Liu, F. (2022). Occurrence and distribution of microplastics in wastewater treatment plant in a tropical region of China. Journal of Cleaner Production, 349. https://doi.org/https://doi.org/10.1016/j.jclepro.2022.131454
Bayo, J., Olmos, S., & López-Castellano, J. (2020). Microplastics in an urban wastewater treatment plant: The influence of physicochemical parameters and environmental factor. Chemosphere, 238. https://doi.org/10.1016/j.chemosphere.2019.124593
Becucci, M., Mancini , M., Campo, R., & Paris, E. (2022). Microplastics in the Florence wastewater treatment plant studied by a continuous sampling method and Raman spectroscopy: A preliminary investigation. Science of The Total Environment, 808. https://doi.org/10.1016/j.scitotenv.2021.152025
Ben-David, E. A., Habibi, M., Haddad, E., Hasanin, M., Angel, D. D., Booth, A. M., & Sabbah, I. (2021). Microplastic distributions in a domestic wastewater treatment plant:Removal efficiency, seasonal variation and influence of. Science of the Total Environment, 752, 141880. https://doi.org/10.1016/j.scitotenv.2020.141880
Bitter, H., Krause, L., Kirche, F., Fundneider, T., & Lackner, S. (2022). Semi-crystalline microplastics in wastewater plant effluents and removal efficiencies of post-treatment filtration systems. Water Research X, 17. https://doi.org/10.1016/j.wroa.2022.100156
Blair , R. M., Waldron , S., & Gauchotte-Lindsay, C. (2019). Average daily flow of microplastics through a tertiary wastewater treatment plant over a ten-month period. Water Research, 163. https://doi.org/10.1016/j.watres.2019.114909
Conley, K., Clum, A., Deepe, J., Lane , H., & Beckingham , B. (2019). Wastewater treatment plants as a source of microplastics to an urban estuary: Removal efficiencies and loading per capita over one year. Water Research X, 3. https://doi.org/10.1016/j.wroa.2019.100030
Edo, C., González-Pleiter, M., Leganés, F., Fernández-Piñas, F., & Rosal, R. (2020). Fate of microplastics in wastewater treatment plants and their environmental dispersion with effluent and sludge. Environmental Pollution, 259. https://doi.org/10.1016/j.envpol.2019.113837
Fortin , S., Song , B., & Chris , B. (2019). Quantifying and identifying microplastics in the effluent of advanced wastewater treatment systems using Raman microspectroscopy. Marine Pollution Bulletin, 149. https://doi.org/10.1016/j.marpolbul.2019.110579
Franco, A. A., Arellano, J. M., Albendín , G., Rodríguez-Barroso, R., Quiroga, J. M., & Coello, M. D. (2021). Microplastic pollution in wastewater treatment plants in the city of Cádiz: Abundance, removal efficiency and presence in receiving water body. Science of The Total Environment, 776. https://doi.org/10.1016/j.scitotenv.2021.145795
Gao, Z., Wontor, K., Cizdziel, J. V., & Vianello, A. (2022). Spatiotemporal characteristics of microplastics in a university wastewater treatment plant: Influence of sudden on-campus population swings. Journal of Environmental Chemical Engineering, 10. https://doi.org/10.1016/j.jece.2022.108834
Gies , E. A., LeNoble, J. L., Noel, M., Etemadifar, A., Bishay , F., Hal, E. R., & Ross, P. S. (2018). Retention of microplastics in a major secondary wastewater treatment plant in Vancouver, Canada. Marine Pollution Bulletin, 133, 553-561. https://doi.org/10.1016/j.marpolbul.2018.06.006
Hajji, S., Ben-Haddad , M., Rida Abelouah, M., De-la-Torre, G. E., & Ait Alla , A. (2023). Occurrence, characteristics, and removal of microplastics in wastewater treatment plants located on the Moroccan Atlantic: The case of Agadir metropolis. Science of The Total Environment, 862. https://doi.org/10.1016/j.scitotenv.2022.160815
Hidayaturrahman, H., & Lee, T.-G. (2019). A study on characteristics of microplastic in wastewater of South Korea: Identification, quantification, and fate of microplastics during treatment process. Marine Pollution Bulletin, 146, 696-702. https://doi.org/10.1016/j.marpolbul.2019.06.071
Jiang, J., Wang, X., Ren, H., Cao, G., Xie, G., Xing, D., & Liu, B. (2020). Investigation and fate of microplastics in wastewater and sludge filter cake from a wastewater treatment plant in China. Science of The Total Environment, 746. https://doi.org/10.1016/j.scitotenv.2020.141378
Jiang, L., Chen, M., Huang , Y., Peng , J., Zhao, J., Chan, F., & Yu, X. (2022). Effects of different treatment processes in four municipal wastewater treatment plants on the transport and fate of microplastics. Science of The Total Environment, 831. https://doi.org/10.1016/j.scitotenv.2022.154946
Kankanige, D., & Babel, S. (2021). Contamination by ≥6.5 μm-sized microplastics and their removability in a conventional water treatment plant (WTP) in Thailand. Journal of Water Process Engineering, 40. https://doi.org/10.1016/j.jwpe.2020.101765
Lee, H., & Kim, Y. (2018). Treatment characteristics of microplastics at biological sewage treatment facilities in Korea. Marine Pollution Bulletin, 137, 1-8. https://doi.org/10.1016/j.marpolbul.2018.09.050
Liu, X., Yuan, W., Di, M., Li, Z., & Wang, J. (2019). Transfer and fate of microplastics during the conventional activated sludge process in one wastewater treatment plant of China. Chemical Engineering Journal, 362, 176-182. https://doi.org/10.1016/j.cej.2019.01.033
Long , Z., Pan, Z., Wang, W., Ren, J., Yu, X., Jin, X., . . . Chen , H. (2019). Microplastic abundance, characteristics, and removal in wastewater treatment plants in a coastal city of China. Water Research, 155. https://doi.org/10.1016/j.watres.2019.02.028
Lv , X., Dong , Q., Zuo, Z., Liu, Y., Huang, X., & Wu, W.-M. (2019). Microplastics in a municipal wastewater treatment plant: Fate, dynamic distribution, removal efficiencies, and control strategies. Journal of Cleaner Production, 225, 579-586. https://doi.org/10.1016/j.jclepro.2019.03.321
Magni, S., Binelli, A., Pittura, L., Avio, C. G., Torre, C. D., Parenti, C. C., . . . Regoli, F. (2019). The fate of microplastics in an Italian Wastewater Treatment Plant. Science of The Total Environment, 652, 602-610. https://doi.org/10.1016/j.scitotenv.2018.10.269
Montecinos, S., Gil, M., Tognana, S., Salgueiro, W., & Amalvy, J. (2022). Distribution of microplastics present in a stream that receives discharge from wastewater treatment plants. Environmental Pollution, 314.
Naji , A., Azadkhah, S., Farahani, H., Uddin, S., & Khan, F. R. (2021). Microplastics in wastewater outlets of Bandar Abbas city (Iran): A potential point source of microplastics into the Persian Gulf. Chemosphere, 262. https://doi.org/10.1016/j.chemosphere.2020.128039
Parashar, N., & Hait, S. (2023). Abundance, characterization, and removal of microplastics in different technology-based sewage treatment plants discharging into the middle stretch of the Ganga River, India. Science of The Total Environment, 905. https://doi.org/10.1016/j.scitotenv.2023.167099
Park, H.-J., Oh, M.-J., Kim, P.-G., Kim, G., Jeong, D.-H., Ju, B.-K., . . . Kwon, J.-H. (2020). National Reconnaissance Survey of Microplastics in Municipal Wastewater Treatment Plants in Korea. Environmental Science & Technology, 1503-1512. https://doi.org/10.1021/acs.est.9b04929
Prajapati, S., Beal, M., Maley, J., & Brinkmann, M. (2021). Qualitative and quantitative analysis of microplastics and microfiber contamination in effluents of the City of Saskatoon wastewater treatment plant. Environmental Science and Pollution Research, 32545-32553. https://doi.org/10.1007/s11356-021-12898-7
Prata , J. C., Godoy , V., da Costa, J. P., Calero, M., Martín-Lara , M. A., Duarte , A. C., & Rocha-Santos, T. (2021). Microplastics and fibers from three areas under different anthropogenic pressures in Douro river. Science of The Total Environment, 776. https://doi.org/10.1016/j.scitotenv.2021.145999
Rajala, K., Grönfors, O., Hesampour , M., & Mikola, A. (2020). Removal of microplastics from secondary wastewater treatment plant effluent by coagulation/flocculation with iron, aluminum and polyamine-based chemicals. Water Research, 183. https://doi.org/https://doi.org/10.1016/j.watres.2020.116045
Raju, S., Carbery, M., Kuttykattil, A., Senthirajah, K., Lundmark, A., Rogers , Z., . . . Palanisami , T. (2020). Improved methodology to determine the fate and transport of microplastics in a secondary wastewater treatment plant. Water Research, 173. https://doi.org/10.1016/j.watres.2020.115549
Roscher, L., Halbach, M., Trang Nguyen, M., Hebeler, M., Luschtinetz, F., Scholz-Böttcher, B. M., . . . Gerdts, G. (2022). Microplastics in two German wastewater treatment plants: Year-long effluent analysis with FTIR and Py-GC/MS. Science of The Total Environment, 817. https://doi.org/10.1016/j.scitotenv.2021.152619
Schmidt, C., Kumar, R., Soohyun, Y., & Buttner, O. (2020). Microplastic particle emission from wastewater treatment plant effluents into river networks in Germany: Loads, spatial patterns of. (H. Hollert, Ed.) Science of the Total Environment, 737, 139544. https://doi.org/10.1016/j.scitotenv.2020.139544
Simon, M., Alst, N., & Vollertsen, J. (2018). Quantification of microplastic mass and removal rates at wastewater treatment plants applying Focal Plane Array (FPA)-based Fourier Transform Infrared (FT-IR) imaging. Water Research, 1-9.
Sun, J., Dai, X., Wang, Q., van Loosdrecht, M. C., & Ni, B.-J. (2019, April 1). Microplastics in wastewater treatment plants: Detection, occurrence and removal. Science of The Total Environment, 694, 1014-1026.
Takdastan , A., Niari , M. H., Babaei, A., Dobaradaran, S., Jorfi , S., & Ahmadi, M. (2021). Occurrence and distribution of microplastic particles and the concentration of Di 2-ethyl hexyl phthalate (DEHP) in microplastics and wastewater in the wastewater treatment plant. Journal of Environmental Management, 280. https://doi.org/10.1016/j.jenvman.2020.111851
Tang, N., Liu, X., & Xing, W. (2020). Microplastics in wastewater treatment plants of Wuhan, Central China: Abundance, removal, and potential source in household wastewater. Science of The Total Environment, 745. https://doi.org/10.1016/j.scitotenv.2020.141026
Van Do, M., Thanh Le , T., Dinh Vu , N., & Thi Dang, T. (2022). Distribution and occurrence of microplastics in wastewater treatment plants. Environmental Technology & Innovation, 26. https://doi.org/10.1016/j.eti.2022.102286
Vardar, S., Onay, T. T., Demirel , B., & Kideys, A. E. (2021). Evaluation of microplastics removal efficiency at a wastewater treatment plant discharging to the Sea of Marmara. Environmental Pollution, 289. https://doi.org/10.1016/j.envpol.2021.117862
Wang , C., Xing , R., Sun, M., Ling, W., Shi, W., Cui, S., & An, L. (2020). Microplastics profile in a typical urban river in Beijing. Science of The Total Environment, 743. https://doi.org/10.1016/j.scitotenv.2020.140708
Wang , R., Ji, M., Zhai , H., & Liu, Y. (2020). Occurrence of phthalate esters and microplastics in urban secondary effluents, receiving water bodies and reclaimed water treatment processes. Science of The Total Environment, 737. https://doi.org/10.1016/j.scitotenv.2020.140219
Wang, F., Wang, B., Duan, L., Zhang, Y., Zhou , Y., Sui, Q., . . . Yu, G. (2020). Occurrence and distribution of microplastics in domestic, industrial, agricultural and aquacultural wastewater sources: A case study in Changzhou, China. Water Research, 182. https://doi.org/10.1016/j.watres.2020.115956
Wolff, S., Kerpen, J., Prediger, J., Barkmann, L., & Müller, L. (2019). Determination of the microplastics emission in the effluent of a municipal waste water treatment plant using Raman microspectroscopy. Water Research X, 2. https://doi.org/10.1016/j.wroa.2018.100014
Wu, P., Wang, B., Lu, Y., Cao, G., Xie, P., Wang, W., . . . Cai, Z. (2023). Machine Learning-Assisted Insights into Sources and Fate of Microplastics in Wastewater Treatment Plants. ACS EST Water, 1107–1118. https://doi.org/10.1021/acsestwater.3c00386
Xu , X., Jian, Y., Xue, Y., Hou, Q., & Wang, L. (2019). Microplastics in the wastewater treatment plants (WWTPs): Occurrence and removal. Chemosphere, 235, 1089-1096. https://doi.org/10.1016/j.chemosphere.2019.06.197
Xu, X., Zhang , L., Jian, Y., Xue, Y., Gao , Y., Peng, M., . . . Zhang, Q. (2021). Influence of wastewater treatment process on pollution characteristics and fate of microplastics. Marine Pollution Bulletin, 169. https://doi.org/10.1016/j.marpolbul.2021.112448
Xu, Y., Ou, Q., Wang, X., Hou, F., Li, P., van der Hoek, J. P., & Liu, G. (2023). Assessing the mass concentration of microplastics and nanoplastics in wastewater treatment plants by pyrolysis gas chromatography–mass spectrometry. Environmental Science & Technology, 3114–3123. https://doi.org/10.1021/acs.est.2c07810
Yang, Li , K., Cui , S., Kang, Y., An, L., & Lei, K. (2019). Removal of microplastics in municipal sewage from China’s largest water reclamation plant. Water Research, 155, 175-181. https://doi.org/10.1016/j.watres.2019.02.046
Yang, Li, S., Ma, S., Liu, P., Peng, D., Ouyang, Z., & Guo, X. (2021). Characteristics and removal efficiency of microplastics in sewage treatment plant of Xi’an City, northwest China. Science of The Total Environment, 771. https://doi.org/10.1016/j.scitotenv.2021.145377
Zhang, L., Liu, J., Xie, Y., Zhong , S., & Gao, P. (2021). Occurrence and removal of microplastics from wastewater treatment plants in a typical tourist city in China. Journal of Cleaner Production, 291. https://doi.org/10.1016/j.jclepro.2021.125968
Ziajahromi, S., Neale, P. A., Telles Silveira, I., Chua, A., & Leusch, F. D. (2021). An audit of microplastic abundance throughout three Australian wastewater treatment plants. Chemosphere, 263. https://doi.org/10.1016/j.chemosphere.2020.128294
Copyright (c) 2024 ARIANA JOHANNA JAVIER QUIROZ
This work is licensed under a Creative Commons Attribution 4.0 International License.
Usted es libre de:
- Compartir: Copiar y redistribuir el material en cualquier medio o formato para cualquier propósito, incluso comercialmente.
- Adaptar: Remezclar, transformar y construir a partir del material para cualquier propósito, incluso comercialmente.