Estado del arte de tecnologías de remediación de suelos contaminados por plomo: Revisión Sistemática 2014-2024
Resumo
El plomo (Pb), un metal pesado derivado principalmente de actividades antrópicas como la industria y la minería generando serios problemas ambientales y de salud al acumularse en el suelo. En el presente estudio se revisa sistemáticamente las tecnologías de remediación de suelos contaminados por plomo entre los años 2014 y 2024, empleando la metodología PRISMA. Se identificaron un total de 346 artículos relacionados, provenientes de la base de datos Scopus (335 registros) y Science Direct (11 registros adicionales) en ambos utilizando las palabras clave: “remediation” AND “lead-contaminated” AND “soil” .
Tras aplicar los criterios de exclusión, se eliminaron 218 artículos por duplicados o falta de relevancia temática; quedando así con 128 artículos para una revisión detallada del cual se eliminaron artículos
que no tenían acceso libre, no indicaban porcentaje de eficiencia, el tema central no era la remediación, no eran artículos de investigación y no estaban redactados en español ni en inglés. Finalmente, se obtuvieron
43 artículos de las dos bases de datos usadas. Los principales hallazgos destacan que el 53.5% de las investigaciones emplearon tecnología fisicoquímica, con una eficacia de remoción mayor al 80% y predominio de procesos ex situ. China presentó mayor número de publicaciones con 25. Y durante el periodo de estudio se apreció una disminución de estudios a partir del 2022.
Downloads
Referências
Chang, J.H., Liu, Q.F., Yu, J., Wang, Y.T., Peng, W.D., Chen, J.Y., & Liu, W. (2019). Effect, Immobilization and Cooperativity of Amendments on Remediation of Pb-Contaminated Soil. Applied Ecology and Environmental Research, 17(5), 10637-10654. http://doi.org/10.15666/aeer/1705_1063710654
Cheng, S.-F.; Huang C.-Y.; Chen K.-L.; Lin S.-C. & Lin Y.-C. (2015). Exploring the benefits of growing bioenergy crops to activate lead-contaminated agricultural land: a case study on sweet potatoes. Environ Monit Assess, 187, 144. https://doi.org/10.1007/s10661-014-4247-y
Cheng, S.-F., Huang, C.-Y., Lin, S.-C., Chen, K.-L., & Lin, Y.-C. (2015). Feasibility of using peanut (Arachis hypogaea L.) for phytoattenuation on lead-contaminated agricultural land—an in situ study. Agriculture, Ecosystems & Environment, 202, 25–30. https://doi.org/10.1016/j.agee.2014.12.018
Cheng, S.-F., Huang, C.-Y., Lin, Y.-C., Lin, S.-C., & Chen, K.-L. (2015). Phytoremediation of lead using corn in contaminated agricultural land—An in situ study and benefit assessment. Ecotoxicology and Environmental Safety, 111, 72–77. https://doi.org/10.1016/j.ecoenv.2014.09.024
Chen, Y.-M., Lin, W.-H., Lin, Y.-A., Liu, C.-C., & Wang, M.-K. (2014). Remediation of lead-contaminated soil using dissolved organic carbon solutions prepared by wine-processing waste sludge. Geoderma, 235-236, 233–239. https://doi.org/10.1016/j.geoderma.2014.07.004
Chiwetalu, U. J., Mbajiorgu, C. C., & Ogbuagu, N. J. (2020). Remedial ability of maize (Zea-Mays) on lead contamination under potted condition and non-potted field soil condition. Journal of bioresources and bioproducts, 5(1), 51-59. https://doi.org/10.1016/j.jobab.2020.03.006
De la Rosa-Pérez, D. A., Teutli-León, M. M. M., & Ramírez-Islas, M. E. (2007). Electrorremediación de suelos contaminados, una revisión técnica para su aplicación en campo. Revista Internacional de Contaminación Ambiental, 23(3), 129-138.
Ge S., Jiang W., Zheng L., Xie X., Pan Y. (2021). Green remediation of high-lead contaminated soil by stabilization/solidification with insoluble humin: Long-term leaching and mechanical characteristics. Journal of Cleaner Production, 324, 09596526. http://doi.org/10.1016/j.jclepro.2021.129184
Ge, S., Pan, Y., Zheng, L., & Xie, X. (2020). Effects of organic matter components and incubation on the cement-based stabilization/solidification characteristics of lead-contaminated soil. Chemosphere, 260, 127646. http://doi.org/10.1016/j.chemosphere.2020.127646
Gong, H., Chi, J., Ding, Z., Zhang, F., & Huang, J. (2020). Removal of lead from two polluted soils by magnetic wheat straw biochars. Ecotoxicology and environmental safety, 205, 111132. https://doi.org/10.1016/j.ecoenv.2020.111132
He, Y., Yang, L., He, C., & Wang, F. (2022). Burkholderia cepacia enhanced electrokinetic-permeable reaction barrier for the remediation of lead contaminated soils. Sustainability, 14(18), 11440. https://doi.org/10.3390/su141811440
Herliana, O., Ahadiyat, Y.R., & Cahyani, W. (2021). Utilization of biochar and Trichoderma harzianum to promote growth of shallot and remediate lead-contaminated soil. Journal of Degraded and Mining Lands Management, 8(3), 2743-2750. http://doi.org/10.15243/jdmlm.2021.083.2743
Huang, K.Y., Wang, X.Y., Yuan, W.Y., Xie, J.Y., Wang, J.W., Li, J.H. (2022). Remediation of lead-contaminated soil by washing with choline chloride-based deep eutectic solvents. Process Saf. and Environ, 160, 650–660. https://doi.org/10.1016/j.psep.2022.01.034
Hussein, A. A., & Alatabe, M. J. A. (2019). Remediation of Lead-Contaminated Soil, Using Clean Energy in Combination with Electro-Kinetic Methods. Pollution, 5(4), 859-869. https://doi.org/10.22059/poll.2019.275250.579
Huang, K., Shen, Y., Wang, X., Song, X., Yuan, W., Xie, J., Wang, S., Bai, J., & Wang, J. (2021). Choline-based deep eutectic solvent combined with EDTA-2Na as novel soil washing agent for lead removal in contaminated soil. Chemosphere, 279, 130568. https://doi.org/10.1016/j.chemosphere.2021.130568
Jih-Hsing Chang, Cheng-Di Dong, Shan-Yi Shen. (2019). The lead contaminated land treated by the circulation-enhanced electrokinetics and phytoremediation in field scale, Journal of Hazardous Materials, 368, 894-898. https://doi.org/10.1016/j.jhazmat.2018.08.085
Kaifer, M. J., Aguilar, A., Arana, E., Balseiro, C., Torá, I., Caleya, J. M., & Pijls, C. (2004). Guía de tecnologías de recuperación de suelos contaminados. Comunidad de Madrid, Consejería de medio ambiente y ordenación del territorio.
Keykha, H.A., Ardakani, A., Talebi, H., & Romiani, H.M. (2022). Green Remediation for Lead-Contaminated Soil Using Carbon Dioxide Injection. Journal of Hazardous, Toxic, and Radioactive Waste, 26(4). http://doi.org/10.1061/(ASCE)HZ.2153-5515.0000712
Kushwaha, A., Hans, N., Kumar, S., & Rani, R. (2018). A critical review on speciation, mobilization and toxicity of lead in soil-microbe-plant system and bioremediation strategies. Ecotoxicology and Environmental Safety, 147, 1035–1045. https://doi.org/10.1016/j.ecoenv.2017.09.049
Li, C., Hou, H., Yang, J., Liang, S., Shi, Y., Guan, R., Hu, Y., Xu, W., Hu, J., & Wang, L. (2019). Comparison of Electrokinetic Remediation on Lead‐Contaminated Kaolinite and Natural Soils. CLEAN - Soil, Air, Water, 47: 1800337. https://doi.org/10.1002/clen.201800337
Li, J., Wang, Q., Chen, Z., Xue, Q., Chen, X., Mu, Y., & Poon, C. S. (2021). Immobilization of high-Pb contaminated soil by oxalic acid activated incinerated sewage sludge ash. Environmental Pollution, 284, 117120. https://doi.org/10.1016/j.envpol.2021.117120
Liu, G., Liao, B., Lu, T., Wang, H., Xu, L., Li, Z., & Ye, C. (2020). Insight into immobilization of Pb2+ in aqueous solution and contaminated soil using hydroxyapatite/attapulgite composite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 603(125290), 125290. https://doi.org/10.1016/j.colsurfa.2020.125290
Liu, C., Lin, H., Dong, Y., Li, B., & Liu, Y. (2018). Investigation on microbial community in remediation of lead-contaminated soil by Trifolium repens L. Ecotoxicology and Environmental Safety, 165, 52-60. http://doi.org/10.1016/j.ecoenv.2018.08.054
Liu, J., Li, H., Wu, R., Zhu, Y., & Shi, W. (2016). Effect of weathered coal on the leaching behavior of lead-contaminated soil with simulated acid rain. Water, Air, and Soil Pollution, 227(10). https://doi.org/10.1007/s11270-016-3052-3
Liu, Q., Luo, J., Tang, J., Chen, Z., Chen, Z., Lin, Q., et al. (2022). Remediation of cadmium and lead contaminated soils using Fe-OM based materials. Chemosphere, 307, 135853–135861. https://doi.org/10.1016/j.chemosphere.2022.135853.
Lu, N., Li, G., Sun, Y., Wei, Y., He, L., & Li, Y. (2021). Phytoremediation potential of four native plants in soils contaminated with lead in a mining area. Land, 10(11), 1129. http://doi.org/10.3390/land10111129
Ma, C., Liu, F.-Y., Wei, M.-B., Zhao J.-H., & Zhang H.-Z. (2020). Synthesis of Novel Core-Shell Magnetic Fe3O4@C Nanoparticles with Carboxyl Function for Use as an Immobilisation Agent to Remediate Lead-Contaminated Soils. Polish Journal of Environmental Studies, 29(3), 2273-2283. http://doi.org/10.15244/pjoes/111232
Morales Arteaga, J. F., Gluhar, S., Kaurin, A., & Lestan, D. (2022). Simultaneous removal of arsenic and toxic metals from contaminated soil: Laboratory development and pilot scale demonstration. Environmental pollution (Barking, Essex : 1987), 294, 118656. https://doi.org/10.1016/j.envpol.2021.118656
Ogundiran, M. B., Mekwunyei, N. S., & Adejumo, S. A. (2018). Compost and biochar assisted phytoremediation potentials of Moringa oleifera for remediation of lead contaminated soil. Journal Of Environmental Chemical Engineering, 6(2), 2206-2213. https://doi.org/10.1016/j.jece.2018.03.025
Oziegbe, O., Oluduro, A. O., Oziegbe, E. J., Ahuekwe, E. F., & Olorunsola, S. J. (2021). Assessment of heavy metal bioremediation potential of bacterial isolates from landfill soils. Saudi journal of biological sciences, 28(7), 3948–3956. https://doi.org/10.1016/j.sjbs.2021.03.072.
Ozkan A., Banar M., Cokaygil Z., Kulac A., Yalcin G., Taspinar K., & Altay A. (2014). Pyrolysis of Hyperaccumulator Plants Used for the Phytoremediation of Lead Contaminated Soil. Ekoloji, 23(92), 51-56 https://doi.org/10.5053/ekoloji.2014.926.
Patra, S., Sengupta, S., Das, S., Mazumdar, D. (2023). Remediation of Lead Toxicity Using Phosphorus in Lead-Contaminated Agricultural Soils. Clean - Soil, Air, Water, 51(5), 1-10. https://doi.org/10.1002/clen.202200309
Qiu, S., Cao, W., Chen, Z., Liu, Y., Song, J., Zhang, R., & Bai, H. (2021). Experiments and mechanisms for leaching remediation of lead-contaminated soil by enhancing permeability. Chemical Engineering Journal (Lausanne, Switzerland: 1996), 426, 130720. https://doi.org/10.1016/j.cej.2021.130720
Rosariastuti, R., Sudadi, Supriyadi, & Prasasti, F. S. (2020). A bioremediation process based on the application of Rhizobium sp. I3 and Ramie (Boehmeria nivea L.) in lead contaminated soils. Journal Für Kulturpflanzen, 72(2-3), 40–48. https://doi.org/10.5073/JfK.2020.02-03.02
Rui, D., Wang, Y., Nie, W., Kim, M., Zhang, J., Wang, S., Ito, Y., & Niu, F. (2024). Remediation of Pb- and Cd-contaminated clayey soil via magnetic-enhanced washing. Pedosphere. https://doi.org/10.1016/j.pedsph.2023.12.013
Saghi, A., Rashed Mohassel, M. H., Parsa, M., & Hammami, H. (2016). Phytoremediation of lead-contaminated soil by Sinapis arvensis and Rapistrum rugosum. International Journal of Phytoremediation, 18(4), 387–392. https://doi.org/10.1080/15226514.2015.1109607
Shen, Z., Pan, S., Hou, D., O’Connor, D., Jin, F., Mo, L., Xu, D., Zhang, Z., & Alessi, D. S. (2019). Temporal effect of MgO reactivity on the stabilization of lead contaminated soil. Environment International, 131, 104990. https://doi.org/10.1016/j.envint.2019.104990
Silwamba, M., Ito, M., Tabelin, C. B., Tabelin, C. B., Jeon, S., Takada, M., Kubo, Y., Hokari, N., Tsunekawa, M., & Hiroyoshi, N. (2021). Simultaneous extraction and recovery of lead using citrate and micro-scale zero-valent iron for decontamination of polluted shooting range soils. Environmental Advances, 5, 100115. https://doi.org/10.1016/j.envadv.2021.100115
Singh, B., Kaur, B., & Singh, D. (2020). Assessment of different multipurpose tree species for phytoextraction of lead from lead-contaminated soils. Bioremediation Journal, 24(4), 215-230. https://doi.org/10.1080/10889868.2020.1811634
Sun, L., Cao, X., Min, L., Zhang, X., Li, X., & Cui, Z. (2017). Enhanced bioremediation of lead-contaminated soil by Solanum nigrum L. with Mucor circinelloides. Environmental Science And Pollution Research, 24(10), 9681-9689. https://doi.org/10.1007/s11356-017-8637-x
Teng, Z., Zhao, X., Jia, B., Ye, L., Tian, S., Guo, H., Guo, Y., Ji, X., Li, T., & Li, M. (2023). Bioremediation system consisted with Leclercia adecarboxylata and nZVI@Carbon/Phosphate for lead immobilization: The passivation mechanisms of chemical reaction and biological metabolism in soil. Journal Of Environmental Management, 340, 117888. https://doi.org/10.1016/j.jenvman.2023.117888
Teng, Z., Zhao, X., Yuan, J., Li, M., & Li, T. (2021). Phosphate functionalized iron based nanomaterials coupled with phosphate solubilizing bacteria as an efficient remediation system to enhance lead passivation in soil. Journal of hazardous materials, 419, 126433. https://doi.org/10.1016/j.jhazmat.2021.126433
Thangavadivel, K., Ranganathan, S., Sanderson, P., Chadalavada, S., Naidu, R., & Bowman, M. (2018). Case study of testing heavy‐particle concentrator‐aided remediation of lead‐contaminated rifle shooting range soil. Remediation, 28(3), 67-74. https://doi.org/10.1002/rem.21561
Thinh, N. V., Osanai, Y., Adachi, T., Vuong, B. T. S., Kitano, I., Chung, N. T., & Thai, P. K. (2021). Removal of lead and other toxic metals in heavily contaminated soil using biodegradable chelators: GLDA, citric acid and ascorbic acid. Chemosphere, 263, 127912. https://doi.org/10.1016/j.chemosphere.2020.127912
Wang, Y., Lin, Q., Xiao, R., Cheng, S., Luo, H., Wen, X., Wu, L., & Zhong, Q. (2020). Removal of Cu and Pb from contaminated agricultural soil using mixed chelators of fulvic acid potassium and citric acid. Ecotoxicology and environmental safety, 206, 111179. http://dx.doi.org/10.1016/j.ecoenv.2020.111179.
Xiao, L., Cheng, X., Zhang, T., Guo, M., & Zhang, M. (2022). Efficient inorganic/organic acid leaching for the remediation of protogenetic lead-contaminated soil. Applied Sciences (Basel, Switzerland), 12(8), 3995. https://doi.org/10.3390/app12083995
Yang, Z., Fang, Z., Tsang, P. E., Fang, J., & Zhao, D. (2016). In situ remediation and phytotoxicity assessment of lead-contaminated soil by biochar-supported nHAP. Journal of Environmental Management, 182, 247–251. https://doi.org/10.1016/j.jenvman.2016.07.079
Zhang, H., Wang, Z., & Gao, Y. (2018). Compound washing remediation and response surface analysis of lead-contaminated soil in mining area by fermentation broth and saponin. Environmental science and pollution research international, 25(7), 6899–6908. https://doi.org/10.1007/s11356-017-0971-5
Zhu, J., Gao, W., Zhao, W., Ge, L., Zhu, T., Zhang, G., & Niu, Y. (2020). Wood vinegar enhances humic acid-based remediation material to solidify Pb(II) for metal-contaminated soil. Environmental Science and Pollution Research International, 28(10), 12648–12658. https://doi.org/10.1007/s11356-020-11202-3
Copyright (c) 2024 Jose Daniel Pariona Janampa, Lily Denise Tello Peramas, Jazmín Milagros Roque Ponce, Nobelí Katherine Carreño Condori, Alejandro Jose Manayay Aranda, Leslie Laura Teodora Meza Hualaparuca, Alexandra Sheyla Zapana Oro
This work is licensed under a Creative Commons Attribution 4.0 International License.
Usted es libre de:
- Compartir: Copiar y redistribuir el material en cualquier medio o formato para cualquier propósito, incluso comercialmente.
- Adaptar: Remezclar, transformar y construir a partir del material para cualquier propósito, incluso comercialmente.