Estado del arte de tecnologías de remediación de suelos contaminados por plomo: Revisión Sistemática 2014-2024

Palabras clave: Remediación, Suelo, Contaminación, Plomo

Resumen

El plomo (Pb), un metal pesado derivado principalmente de actividades antrópicas como la industria y la minería generando serios problemas ambientales y de salud al acumularse en el suelo. En el presente estudio se revisa sistemáticamente las tecnologías de remediación de suelos contaminados por plomo entre los años 2014 y 2024, empleando la metodología PRISMA. Se identificaron un total de 346 artículos relacionados, provenientes de la base de datos Scopus (335 registros) y Science Direct (11 registros adicionales) en ambos utilizando las palabras clave: “remediation” AND “lead-contaminated” AND “soil” .
Tras aplicar los criterios de exclusión, se eliminaron 218 artículos por duplicados o falta de relevancia temática; quedando así con 128 artículos para una revisión detallada del cual se eliminaron artículos
que no tenían acceso libre, no indicaban porcentaje de eficiencia, el tema central no era la remediación, no eran artículos de investigación y no estaban redactados en español ni en inglés. Finalmente, se obtuvieron
43 artículos de las dos bases de datos usadas. Los principales hallazgos destacan que el 53.5% de las investigaciones emplearon tecnología fisicoquímica, con una eficacia de remoción mayor al 80% y predominio de procesos ex situ. China presentó mayor número de publicaciones con 25. Y durante el periodo de estudio se apreció una disminución de estudios a partir del 2022.

Descargas

La descarga de datos todavía no está disponible.

Citas

Chang, J.H., Liu, Q.F., Yu, J., Wang, Y.T., Peng, W.D., Chen, J.Y., & Liu, W. (2019). Effect, Immobilization and Cooperativity of Amendments on Remediation of Pb-Contaminated Soil. Applied Ecology and Environmental Research, 17(5), 10637-10654. http://doi.org/10.15666/aeer/1705_1063710654

Cheng, S.-F.; Huang C.-Y.; Chen K.-L.; Lin S.-C. & Lin Y.-C. (2015). Exploring the benefits of growing bioenergy crops to activate lead-contaminated agricultural land: a case study on sweet potatoes. Environ Monit Assess, 187, 144. https://doi.org/10.1007/s10661-014-4247-y

Cheng, S.-F., Huang, C.-Y., Lin, S.-C., Chen, K.-L., & Lin, Y.-C. (2015). Feasibility of using peanut (Arachis hypogaea L.) for phytoattenuation on lead-contaminated agricultural land—an in situ study. Agriculture, Ecosystems & Environment, 202, 25–30. https://doi.org/10.1016/j.agee.2014.12.018

Cheng, S.-F., Huang, C.-Y., Lin, Y.-C., Lin, S.-C., & Chen, K.-L. (2015). Phytoremediation of lead using corn in contaminated agricultural land—An in situ study and benefit assessment. Ecotoxicology and Environmental Safety, 111, 72–77. https://doi.org/10.1016/j.ecoenv.2014.09.024

Chen, Y.-M., Lin, W.-H., Lin, Y.-A., Liu, C.-C., & Wang, M.-K. (2014). Remediation of lead-contaminated soil using dissolved organic carbon solutions prepared by wine-processing waste sludge. Geoderma, 235-236, 233–239. https://doi.org/10.1016/j.geoderma.2014.07.004

Chiwetalu, U. J., Mbajiorgu, C. C., & Ogbuagu, N. J. (2020). Remedial ability of maize (Zea-Mays) on lead contamination under potted condition and non-potted field soil condition. Journal of bioresources and bioproducts, 5(1), 51-59. https://doi.org/10.1016/j.jobab.2020.03.006

De la Rosa-Pérez, D. A., Teutli-León, M. M. M., & Ramírez-Islas, M. E. (2007). Electrorremediación de suelos contaminados, una revisión técnica para su aplicación en campo. Revista Internacional de Contaminación Ambiental, 23(3), 129-138.

Ge S., Jiang W., Zheng L., Xie X., Pan Y. (2021). Green remediation of high-lead contaminated soil by stabilization/solidification with insoluble humin: Long-term leaching and mechanical characteristics. Journal of Cleaner Production, 324, 09596526. http://doi.org/10.1016/j.jclepro.2021.129184

Ge, S., Pan, Y., Zheng, L., & Xie, X. (2020). Effects of organic matter components and incubation on the cement-based stabilization/solidification characteristics of lead-contaminated soil. Chemosphere, 260, 127646. http://doi.org/10.1016/j.chemosphere.2020.127646

Gong, H., Chi, J., Ding, Z., Zhang, F., & Huang, J. (2020). Removal of lead from two polluted soils by magnetic wheat straw biochars. Ecotoxicology and environmental safety, 205, 111132. https://doi.org/10.1016/j.ecoenv.2020.111132

He, Y., Yang, L., He, C., & Wang, F. (2022). Burkholderia cepacia enhanced electrokinetic-permeable reaction barrier for the remediation of lead contaminated soils. Sustainability, 14(18), 11440. https://doi.org/10.3390/su141811440

Herliana, O., Ahadiyat, Y.R., & Cahyani, W. (2021). Utilization of biochar and Trichoderma harzianum to promote growth of shallot and remediate lead-contaminated soil. Journal of Degraded and Mining Lands Management, 8(3), 2743-2750. http://doi.org/10.15243/jdmlm.2021.083.2743

Huang, K.Y., Wang, X.Y., Yuan, W.Y., Xie, J.Y., Wang, J.W., Li, J.H. (2022). Remediation of lead-contaminated soil by washing with choline chloride-based deep eutectic solvents. Process Saf. and Environ, 160, 650–660. https://doi.org/10.1016/j.psep.2022.01.034

Hussein, A. A., & Alatabe, M. J. A. (2019). Remediation of Lead-Contaminated Soil, Using Clean Energy in Combination with Electro-Kinetic Methods. Pollution, 5(4), 859-869. https://doi.org/10.22059/poll.2019.275250.579

Huang, K., Shen, Y., Wang, X., Song, X., Yuan, W., Xie, J., Wang, S., Bai, J., & Wang, J. (2021). Choline-based deep eutectic solvent combined with EDTA-2Na as novel soil washing agent for lead removal in contaminated soil. Chemosphere, 279, 130568. https://doi.org/10.1016/j.chemosphere.2021.130568

Jih-Hsing Chang, Cheng-Di Dong, Shan-Yi Shen. (2019). The lead contaminated land treated by the circulation-enhanced electrokinetics and phytoremediation in field scale, Journal of Hazardous Materials, 368, 894-898. https://doi.org/10.1016/j.jhazmat.2018.08.085

Kaifer, M. J., Aguilar, A., Arana, E., Balseiro, C., Torá, I., Caleya, J. M., & Pijls, C. (2004). Guía de tecnologías de recuperación de suelos contaminados. Comunidad de Madrid, Consejería de medio ambiente y ordenación del territorio.

Keykha, H.A., Ardakani, A., Talebi, H., & Romiani, H.M. (2022). Green Remediation for Lead-Contaminated Soil Using Carbon Dioxide Injection. Journal of Hazardous, Toxic, and Radioactive Waste, 26(4). http://doi.org/10.1061/(ASCE)HZ.2153-5515.0000712

Kushwaha, A., Hans, N., Kumar, S., & Rani, R. (2018). A critical review on speciation, mobilization and toxicity of lead in soil-microbe-plant system and bioremediation strategies. Ecotoxicology and Environmental Safety, 147, 1035–1045. https://doi.org/10.1016/j.ecoenv.2017.09.049

Li, C., Hou, H., Yang, J., Liang, S., Shi, Y., Guan, R., Hu, Y., Xu, W., Hu, J., & Wang, L. (2019). Comparison of Electrokinetic Remediation on Lead‐Contaminated Kaolinite and Natural Soils. CLEAN - Soil, Air, Water, 47: 1800337. https://doi.org/10.1002/clen.201800337

Li, J., Wang, Q., Chen, Z., Xue, Q., Chen, X., Mu, Y., & Poon, C. S. (2021). Immobilization of high-Pb contaminated soil by oxalic acid activated incinerated sewage sludge ash. Environmental Pollution, 284, 117120. https://doi.org/10.1016/j.envpol.2021.117120

Liu, G., Liao, B., Lu, T., Wang, H., Xu, L., Li, Z., & Ye, C. (2020). Insight into immobilization of Pb2+ in aqueous solution and contaminated soil using hydroxyapatite/attapulgite composite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 603(125290), 125290. https://doi.org/10.1016/j.colsurfa.2020.125290

Liu, C., Lin, H., Dong, Y., Li, B., & Liu, Y. (2018). Investigation on microbial community in remediation of lead-contaminated soil by Trifolium repens L. Ecotoxicology and Environmental Safety, 165, 52-60. http://doi.org/10.1016/j.ecoenv.2018.08.054

Liu, J., Li, H., Wu, R., Zhu, Y., & Shi, W. (2016). Effect of weathered coal on the leaching behavior of lead-contaminated soil with simulated acid rain. Water, Air, and Soil Pollution, 227(10). https://doi.org/10.1007/s11270-016-3052-3

Liu, Q., Luo, J., Tang, J., Chen, Z., Chen, Z., Lin, Q., et al. (2022). Remediation of cadmium and lead contaminated soils using Fe-OM based materials. Chemosphere, 307, 135853–135861. https://doi.org/10.1016/j.chemosphere.2022.135853.

Lu, N., Li, G., Sun, Y., Wei, Y., He, L., & Li, Y. (2021). Phytoremediation potential of four native plants in soils contaminated with lead in a mining area. Land, 10(11), 1129. http://doi.org/10.3390/land10111129

Ma, C., Liu, F.-Y., Wei, M.-B., Zhao J.-H., & Zhang H.-Z. (2020). Synthesis of Novel Core-Shell Magnetic Fe3O4@C Nanoparticles with Carboxyl Function for Use as an Immobilisation Agent to Remediate Lead-Contaminated Soils. Polish Journal of Environmental Studies, 29(3), 2273-2283. http://doi.org/10.15244/pjoes/111232

Morales Arteaga, J. F., Gluhar, S., Kaurin, A., & Lestan, D. (2022). Simultaneous removal of arsenic and toxic metals from contaminated soil: Laboratory development and pilot scale demonstration. Environmental pollution (Barking, Essex : 1987), 294, 118656. https://doi.org/10.1016/j.envpol.2021.118656

Ogundiran, M. B., Mekwunyei, N. S., & Adejumo, S. A. (2018). Compost and biochar assisted phytoremediation potentials of Moringa oleifera for remediation of lead contaminated soil. Journal Of Environmental Chemical Engineering, 6(2), 2206-2213. https://doi.org/10.1016/j.jece.2018.03.025

Oziegbe, O., Oluduro, A. O., Oziegbe, E. J., Ahuekwe, E. F., & Olorunsola, S. J. (2021). Assessment of heavy metal bioremediation potential of bacterial isolates from landfill soils. Saudi journal of biological sciences, 28(7), 3948–3956. https://doi.org/10.1016/j.sjbs.2021.03.072.

Ozkan A., Banar M., Cokaygil Z., Kulac A., Yalcin G., Taspinar K., & Altay A. (2014). Pyrolysis of Hyperaccumulator Plants Used for the Phytoremediation of Lead Contaminated Soil. Ekoloji, 23(92), 51-56 https://doi.org/10.5053/ekoloji.2014.926.

Patra, S., Sengupta, S., Das, S., Mazumdar, D. (2023). Remediation of Lead Toxicity Using Phosphorus in Lead-Contaminated Agricultural Soils. Clean - Soil, Air, Water, 51(5), 1-10. https://doi.org/10.1002/clen.202200309

Qiu, S., Cao, W., Chen, Z., Liu, Y., Song, J., Zhang, R., & Bai, H. (2021). Experiments and mechanisms for leaching remediation of lead-contaminated soil by enhancing permeability. Chemical Engineering Journal (Lausanne, Switzerland: 1996), 426, 130720. https://doi.org/10.1016/j.cej.2021.130720

Rosariastuti, R., Sudadi, Supriyadi, & Prasasti, F. S. (2020). A bioremediation process based on the application of Rhizobium sp. I3 and Ramie (Boehmeria nivea L.) in lead contaminated soils. Journal Für Kulturpflanzen, 72(2-3), 40–48. https://doi.org/10.5073/JfK.2020.02-03.02

Rui, D., Wang, Y., Nie, W., Kim, M., Zhang, J., Wang, S., Ito, Y., & Niu, F. (2024). Remediation of Pb- and Cd-contaminated clayey soil via magnetic-enhanced washing. Pedosphere. https://doi.org/10.1016/j.pedsph.2023.12.013

Saghi, A., Rashed Mohassel, M. H., Parsa, M., & Hammami, H. (2016). Phytoremediation of lead-contaminated soil by Sinapis arvensis and Rapistrum rugosum. International Journal of Phytoremediation, 18(4), 387–392. https://doi.org/10.1080/15226514.2015.1109607

Shen, Z., Pan, S., Hou, D., O’Connor, D., Jin, F., Mo, L., Xu, D., Zhang, Z., & Alessi, D. S. (2019). Temporal effect of MgO reactivity on the stabilization of lead contaminated soil. Environment International, 131, 104990. https://doi.org/10.1016/j.envint.2019.104990

Silwamba, M., Ito, M., Tabelin, C. B., Tabelin, C. B., Jeon, S., Takada, M., Kubo, Y., Hokari, N., Tsunekawa, M., & Hiroyoshi, N. (2021). Simultaneous extraction and recovery of lead using citrate and micro-scale zero-valent iron for decontamination of polluted shooting range soils. Environmental Advances, 5, 100115. https://doi.org/10.1016/j.envadv.2021.100115

Singh, B., Kaur, B., & Singh, D. (2020). Assessment of different multipurpose tree species for phytoextraction of lead from lead-contaminated soils. Bioremediation Journal, 24(4), 215-230. https://doi.org/10.1080/10889868.2020.1811634

Sun, L., Cao, X., Min, L., Zhang, X., Li, X., & Cui, Z. (2017). Enhanced bioremediation of lead-contaminated soil by Solanum nigrum L. with Mucor circinelloides. Environmental Science And Pollution Research, 24(10), 9681-9689. https://doi.org/10.1007/s11356-017-8637-x

Teng, Z., Zhao, X., Jia, B., Ye, L., Tian, S., Guo, H., Guo, Y., Ji, X., Li, T., & Li, M. (2023). Bioremediation system consisted with Leclercia adecarboxylata and nZVI@Carbon/Phosphate for lead immobilization: The passivation mechanisms of chemical reaction and biological metabolism in soil. Journal Of Environmental Management, 340, 117888. https://doi.org/10.1016/j.jenvman.2023.117888

Teng, Z., Zhao, X., Yuan, J., Li, M., & Li, T. (2021). Phosphate functionalized iron based nanomaterials coupled with phosphate solubilizing bacteria as an efficient remediation system to enhance lead passivation in soil. Journal of hazardous materials, 419, 126433. https://doi.org/10.1016/j.jhazmat.2021.126433

Thangavadivel, K., Ranganathan, S., Sanderson, P., Chadalavada, S., Naidu, R., & Bowman, M. (2018). Case study of testing heavy‐particle concentrator‐aided remediation of lead‐contaminated rifle shooting range soil. Remediation, 28(3), 67-74. https://doi.org/10.1002/rem.21561

Thinh, N. V., Osanai, Y., Adachi, T., Vuong, B. T. S., Kitano, I., Chung, N. T., & Thai, P. K. (2021). Removal of lead and other toxic metals in heavily contaminated soil using biodegradable chelators: GLDA, citric acid and ascorbic acid. Chemosphere, 263, 127912. https://doi.org/10.1016/j.chemosphere.2020.127912

Wang, Y., Lin, Q., Xiao, R., Cheng, S., Luo, H., Wen, X., Wu, L., & Zhong, Q. (2020). Removal of Cu and Pb from contaminated agricultural soil using mixed chelators of fulvic acid potassium and citric acid. Ecotoxicology and environmental safety, 206, 111179. http://dx.doi.org/10.1016/j.ecoenv.2020.111179.

Xiao, L., Cheng, X., Zhang, T., Guo, M., & Zhang, M. (2022). Efficient inorganic/organic acid leaching for the remediation of protogenetic lead-contaminated soil. Applied Sciences (Basel, Switzerland), 12(8), 3995. https://doi.org/10.3390/app12083995

Yang, Z., Fang, Z., Tsang, P. E., Fang, J., & Zhao, D. (2016). In situ remediation and phytotoxicity assessment of lead-contaminated soil by biochar-supported nHAP. Journal of Environmental Management, 182, 247–251. https://doi.org/10.1016/j.jenvman.2016.07.079

Zhang, H., Wang, Z., & Gao, Y. (2018). Compound washing remediation and response surface analysis of lead-contaminated soil in mining area by fermentation broth and saponin. Environmental science and pollution research international, 25(7), 6899–6908. https://doi.org/10.1007/s11356-017-0971-5

Zhu, J., Gao, W., Zhao, W., Ge, L., Zhu, T., Zhang, G., & Niu, Y. (2020). Wood vinegar enhances humic acid-based remediation material to solidify Pb(II) for metal-contaminated soil. Environmental Science and Pollution Research International, 28(10), 12648–12658. https://doi.org/10.1007/s11356-020-11202-3

Publicado
2024-12-27
Cómo citar
Pariona Janampa, J. D., Tello Peramas, L. D., Roque Ponce, J. M., Carreño Condori, N. K., Manayay Aranda, A. J., Meza Hualaparuca, L. L. T., & Zapana Oro, A. S. (2024). Estado del arte de tecnologías de remediación de suelos contaminados por plomo: Revisión Sistemática 2014-2024. Ambiente, Comportamiento Y Sociedad, 7(1), 56 - 81. https://doi.org/10.51343/racs.v7i1.1307
Sección
REVISIONES SISTEMÁTICAS