Meta-análise da resistência à compressão não confinada de solos estabilizados com xantana

Resumo

La estabilización del suelo se orienta a la mejora de las características de suelos con limitaciones técnicas mediante la incorporación de materiales adicionales, generando así suelos optimizados para soportar cargas
estructurales y prevenir daños geotécnicos. La bioestabilización emplea métodos biológicos como una opción alternativa al uso de cemento, cuyo empleo trae graves consecuencias ambientales. El polisacárido extracelular bacteriano denominado goma Xanthan ha sido objeto de estudio como estabilizante del suelo. No obstante, la diversidad de resultados presentes en la literatura científica subraya la necesidad de una
consolidación de los efectos observados sobre la propiedad geotécnica de resistencia a la compresión simple. En el presente estudio, se consolidaron los valores de compresión simple documentados en artículos indexados mediane un metaanálisis de 27 artículos. Los principales hallazgos incluyen el desarrollo de una superficie de respuesta para los valores de compresión simple en distintos tipos de suelos, considerando variados tiempos de curado y diferentes dosificaciones de goma Xanthan. Se concluye que la cantidad de goma Xanthan aplicada al suelo puede clasificarse en micro, meso y macro dosis. Asimismo, los períodos de curado necesarios para alcanzar mejoras en la resistencia oscilan desde unas pocas horas hasta varios meses. La efectividad de la goma Xanthan para incrementar la resistencia a la compresión simple está fuertemente influenciada por el tipo de suelo; se ha determinado que la resistencia puede cuadruplicarse en las arcillas. Finalmente, se han identificado las principales lagunas de conocimiento vinculadas a la estabilización de suelos mediante goma Xanthan.

Downloads

Não há dados estatísticos.

Referências

Adroit. (2023). Xanthan gum market application and region global forecast 2022to 2031.https://www.adroitmarketresearch.com/industry-reports/xanthan-gum-market

Alibaba. (2023). Xanthan gum - Xanthan gum manufacturers, suppliers and exporters on Alibaba.com food additives.https://www.alibaba.com/trade/search?fsb=yyIndexArea=product_enyCatId=ytab=allySearchText=xanthan+gum

Alshkane, Y., Rashed, K., y Daoud, H. (2020). Unconfined compressive strength (UCS) and compressibility indices predictions from dynamic cone penetrometer index (DCP) for cohesive soil in Kurdistan Region/Iraq. Geotechnical and Geological Engineering, 38(5), 3683–3695.

Anandha, S., y Sujatha, E. R. (2021). Compaction and permeability characteristics of biopolymer-treated soil. Lecture Notes in Civil Engineering, 79. https://doi.org/10.1007/978-981-15-5101-7_11

Arbulu-Jurado, C. (2023, 30 de enero). Meta-analysis of the unconfined compressive strength of soils with Xanthan - Database. https://doi.org/10.17605/OSF.IO/5QJ9G

Ashby, M. (2015). Materials and sustainable development.https://doi.org/10.1007/s11741-998-0069-x

Avery, M. R., Burkholder, L. A., y Gruenenfelder, M. A. (1986). Use of crosslinked Xanthan gels in actual profile modification field projects. Society of Petroleum Engineers of AIME, (Paper) SPE, 2. https://doi.org/10.2118/14114-ms

Ayeldeen, M., Negm, A., El-Sawwaf, M., y Kitazume, M. (2017). Enhancing mechanical behaviors of collapsible soil using two biopolymers. Journal of Rock Mechanics and Geotechnical Engineering, 9(2). https://doi.org/10.1016/j.jrmge.2016.11.007

Bagheri, P., Gratchev, I., y Rybachuk, M. (2023). Effects of Xanthan gum biopolymer on soil mechanical properties. Applied Sciences, 13(2), 887. https://doi.org/10.3390/app13020887

Cabalar, A. F., Awraheem, M. H., y Khalaf, M. M. (2018). Geotechnical properties of a low-plasticity clay with biopolymer. Journal of Materials in Civil Engineering, 30(8). https://doi.org/10.1061/(asce)mt.1943-5533.0002380

Chalmers, I., y Altman, D. G. (1995). Systematic reviews. BMJ Publishing Group.

Chang, I., Im, J., y Cho, G. C. (2016). Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering. Sustainability (Switzerland), 8(3). https://doi.org/10.3390/su8030251

Chang, I., Im, J., Prasidhi, A. K., y Cho, G. C. (2015). Effects of Xanthan gum biopolymer on soil strengthening. Construction and Building Materials, 74. https://doi.org/10.1016/j.conbuildmat.2014.10.026

Chen, C., Wei, K., Gu, J., Huang, X., Dai, X., y Liu, Q. (2022). Combined effect of biopolymer and fiber inclusions on unconfined compressive strength of soft soil. Polymers, 14(4). https://doi.org/10.3390/polym14040787

Chen, Y. (2019). Hydrogels based on natural polymers.https://doi.org/10.1016/C2018-0-00171-1

Choi, S. G., Chang, I., Lee, M., Lee, J. H., Han, J. T., y Kwon, T. H. (2020). Review on geotechnical engineering properties of sands treated by microbially induced calcium carbonate precipitation (MICP) and biopolymers. Construction and Building Materials, 246.https://doi.org/10.1016/j.conbuildmat.2020.118415

Das, B. M. (2017). Principles of geotechnical engineering. Cengage Learning.

Elkafoury, A., y Azzam, W. (2021). Utilize Xanthan gum for enhancing CBR value of used cooking oil-contaminated fine sand subgrade soil for pavement structures. Innovative Infrastructure Solutions, 6(1). https://doi.org/10.1007/s41062-020-00389-6

Fatehi, H., Ong, D., Yu, J., y Chang, I. (2021). Biopolymers as green binders for soil improvement in geotechnical applications: A review. Geosciences (Switzerland), 11(7). https://doi.org/10.3390/geosciences11070291

Ghasemzadeh, H., Mehrpajouh, A., y Pishvaei, M. (2022). Compressive strength of acrylic polymer-stabilized kaolinite clay modified with different additives. ACS Omega, 7(23), 19204–19215. https://doi.org/10.1021/acsomega.2c00236

Ghasemzadeh, H., y Modiri, F. (2020). Application of novel Persian gum hydrocolloid in soil stabilization. Carbohydrate Polymers, 246. https://doi.org/10.1016/j.carbpol.2020.116639

Ghasemzadeh, H., Modiri, F., y Darvishan, E. (2022). A novel clean biopolymer-based additive to improve mechanical and microstructural properties of clayey soil. Clean Technologies and Environmental Policy, 24(3). https://doi.org/10.1007/s10098-021-02234-5

Hamza, M., Nie, Z., Aziz, M., Ijaz, N., Ijaz, Z. ur., y Rehman, Z. ur. (2022). Strengthening potential of xanthan gum biopolymer in stabilizing weak subgrade soil. Clean Technologies and Environmental Policy, 24(9), 2719–2738. https://doi.org/10.1007/s10098-022-02347-5

Hamza, M., Zhihong, N., Aziz, M., Ijaz, N., Ameer, M., y Ijaz, Z. (2022). Geotechnical properties of problematic expansive subgrade stabilized with xanthan gum biopolymer. Road Materials and Pavement Design, 1–15. https://doi.org/10.1080/14680629.2022.2092027

Huang, J., Kogbara, R. B., Hariharan, N., Masad, E. A., y Little, D. N. (2021). A state-of-the-art review of polymers used in soil stabilization. Construction and Building Materials, 305. https://doi.org/10.1016/j.conbuildmat.2021.124685

IBISWorld. (2023). Price of cement - United States.https://www.ibisworld.com/us/bed/price-of-cement/190/

Jang, J., y Jia, P. (2020). A review of the application of biopolymers on geotechnical engineering and the strengthening mechanisms between typical biopolymers and soils. Advances in Materials Science and Engineering, 2020.https://doi.org/10.1155/2020/1465709

Joga, J. R., y Varaprasad, B. J. S. (2020). Effect of xanthan gum biopolymer on dispersive properties of soils. World Journal of Engineering, 17(4). https://doi.org/10.1108/WJE-05-2020-0152

Joga, J. R., y Varaprasad, B. J. S. (2019). Sustainable improvement of expansive clays using Xanthan gum as a biopolymer. Civil Engineering Journal, 5(9). https://doi.org/10.28991/cej-2019-03091380

Kang, X., Bate, B., Chen, R.-P., Yang, W., y Wang, F. (2019). Physicochemical and mechanical properties of polymer-amended kaolinite and fly ash–kaolinite mixtures. Journal of Materials in Civil Engineering, 31(6). https://doi.org/10.1061/(asce)mt.1943-5533.0002705

Kavazanjian, E., Jr., y Matasovic, N. (2020). Geotechnical engineering: Principles and practices of soil mechanics and foundation engineering. John Wiley y Sons.

Khosravi, M., Tabarsa, A. R., Osouli, A., y Latifi, N. (2020). A biopolymer-based waterproofing mortar for irrigation channel joints. https://doi.org/10.1061/9780784482834.018

Kupolati, W. K., Sadiku, E. R., Frattari, A., Adeboje, A. O., Kambole, C., Mojapelo,K. S., Maite, M. R., Motsilanyane, N., Bezuidenhout, W., Eze, A. A., Ibrahim, I. D., Labana, B. J., Adegbola, T. A., Snyman, J., Moloisane, R. J.,y Berkers, R. F. A. (2019). Biopolymers and nanocomposites in civil engineering applications.https://doi.org/10.1007/978-981-13-8063-1_15

Kwon, Y. M., Chang, I., Lee, M., y Cho, G. C. (2019). Geotechnical engineering behavior of biopolymer-treated soft marine soil. Geomechanics and Engineering, 17(5). https://doi.org/10.12989/gae.2019.17.5.453

Latifi, N., Horpibulsuk, S., Meehan, C. L., Abd Majid, M. Z., Tahir, M. M., y Mohamad, E. T. (2017). Improvement of problematic soils with biopolymer—An environmentally friendly soil stabilizer. Journal of Materials in Civil Engineering, 29(2). https://doi.org/10.1061/(asce)mt.1943-5533.0001706

Latifi, N., Horpibulsuk, S., Meehan, C. L., Majid, M. Z. A., y Rashid, A. S. A. (2016). Xanthan gum biopolymer: An eco-friendly additive for stabilization of tropical organic peat. Environmental Earth Sciences, 75(9). https://doi.org/10.1007/s12665-016-5643-0

Lee, M., Kwon, Y.-M., Park, D.-Y., Chang, I., y Cho, G.-C. (2022). Durability and strength degradation of xanthan gum-based biopolymer treated soil subjected to severe weathering cycles. Scientific Reports, 12(1), 19453. https://doi.org/10.1038/s41598-022-23823-4

Lee, S., Chang, I., Chung, M. K., Kim, Y., y Kee, J. (2017). Geotechnical shear behavior of xanthan gum biopolymer treated sand from direct shear testing. Geomechanics and Engineering, 12(5). https://doi.org/10.12989/gae.2017.12.5.831

Lee, S., Chung, M., Park, H. M., Song, K.-I., y Chang, I. (2019). Xanthan gum biopolymer as soil-stabilization binder for road construction using local soil in Sri Lanka. Journal of Materials in Civil Engineering, 31(11). https://doi.org/10.1061/(asce)mt.1943-5533.0002909

Mendonça, A., Morais, P. V., Pires, A. C., Chung, A. P., y Oliveira, P. V. (2021). A review on the importance of microbial biopolymers such as xanthan gum to improve soil properties. Applied Sciences (Switzerland), 11(1). https://doi.org/10.3390/app11010170

Moghal, A. A. B., y Vydehi, K. V. (2021). State-of-the-art review on efficacy of xanthan gum and guar gum inclusion on the engineering behavior of soils. Innovative Infrastructure Solutions, 6(2). https://doi.org/10.1007/s41062-021-00462-8

MTC. (2013). Manual de carreteras. Especificaciones técnicas generales para construcción (EG-2013).

Muguda, S., Booth, S., Hughes, P. N., Augarde, C. E., Perlot, C., Bruno, A. W., y Gallipoli, D. (2017). Mechanical properties of biopolymer-stabilised soil-based construction materials. Geotechnique Letters, 7(4). https://doi.org/10.1680/jgele.17.00081

Ni, J., Hao, G. L., Chen, J. Q., Ma, L., y Geng, X. Y. (2021). The optimisation analysis of sand-clay mixtures stabilised with xanthan gum biopolymers. Sustainability (Switzerland), 13(7). https://doi.org/10.3390/su13073732

Ni, J., Li, S. S., Ma, y Geng, X. (2020). Performance of soils enhanced with eco-friendly biopolymers in unconfined compression strength tests and fatigue loading tests. Construction and Building Materials, 263. https://doi.org/10.1016/j.conbuildmat.2020.120039

Patole, A. (2021). Principles and practice of systematic reviews and meta-analysis. https://doi.org/10.1007/978-3-030-71921-0

Puzrin, A. (2012). Constitutive modelling in geomechanics: Introduction. https://doi.org/10.1007/978-3-642-27395-7

Ramachandran, A., Ghalib, M., Dhami, N., Cheema, D., y Mukherjee, A. (2022). Multi-functional performance of biopolymers and biocement in stabilisation of road bases. Proceedings of the Institution of Civil Engineers - Construction Materials, 0(0), 1–15. https://doi.org/10.1680/jcoma.21.00063

Ramdas, V., Mandree, P., Mgangira, M., Mukaratirwa, S., Lalloo, R., y Ramchuran, S. (2021). Review of current and future bio-based stabilisation products (enzymatic and polymeric) for road construction materials. Transportation Geotechnics, 27.https://doi.org/10.1016/j.trgeo.2020.100458

Rashid, A., Latifi, N., Meehan, C., y Manahiloh, K. (2017). Sustainable improvement of tropical residual soil using an environmentally friendly additive. Geotechnical and Geological Engineering, 35(6). https://doi.org/10.1007/s10706-017-0265-1

Rashid, A., Tabatabaei, S., Horpibulsuk, S., Mohd Yunus, N., y Hassan, W. (2019). Shear strength improvement of lateritic soil stabilized by biopolymer based stabilizer. Geotechnical and Geological Engineering, 37(6).https://doi.org/10.1007/s10706-019-00944-8

Reddy, N., Nongmaithem, R., Basu, D., y Rao, B. (2020). Application of biopolymers for improving the strength characteristics of red mud waste. Environmental Geotechnics, 9(6). https://doi.org/10.1680/jenge.19.00018

Seo, S., Lee, M., Im, J., Kwon, Y., Chung, M., Cho, G., y Chang, I. (2021). Site application of biopolymer-based soil treatment (BPST) for slope surface protection: In-situ wet-spraying method and strengthening effect verification. Construction and Building Materials, 307.https://doi.org/10.1016/j.conbuildmat.2021.124983

Singh, S., y Das, R. (2020). Geo-engineering properties of expansive soil treated with xanthan gum biopolymer. Geomechanics and Geoengineering, 15(2).https://doi.org/10.1080/17486025.2019.1632495

Singh, S., Das, R., y Seth, D. (2021). Plasticity and strength characteristics of expansive soil treated with Xanthan gum biopolymer. Lecture Notes in Civil Engineering, 88.https://doi.org/10.1007/978-981-15-6237-2_54

Stanford Center for Earth Resources Forecasting. (2023). Software. https://scerf.stanford.edu/resources/software

Soldo, A., y Miletić, M. (2019). Study on shear strength of Xanthan gum-amended soil. Sustainability (Switzerland), 11(21). https://doi.org/10.3390/su11216142

Soldo, A., Miletić, M., y Auad, M. (2020). Biopolymers as a sustainable solution for the enhancement of soil mechanical properties. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-019-57135-x

Statista. (2023). U.S. cement prices 2021. https://www.statista.com/statistics/219339/us-prices-of-cement/

Stupp, S., y Braun, P. (1997). Molecular manipulation of microstructures: Biomaterials, ceramics, and semiconductors. Science, 277(5330). https://doi.org/10.1126/science.277.5330.1242

Sujatha, E., Atchaya, S., Sivasaran, A., y Keerdthe, R. (2021). Enhancing the geotechnical properties of soil using xanthan gum—An eco-friendly alternative to traditional stabilizers. Bulletin of Engineering Geology and the Environment, 80(2). https://doi.org/10.1007/s10064-020-02010-7

Sulaiman, H., Taha, M., Abd Rahman, N., y Mohd Taib, A. (2022). Performance of soil stabilized with biopolymer materials – xanthan gum and guar gum. Physics and Chemistry of the Earth, Parts A/B/C, 128, Article 103276. https://doi.org/10.1016/J.PCE.2022.103276

Toufigh, V., y Ghassemi, P. (2020). Control and stabilization of fugitive dust: Using eco-friendly and sustainable materials. International Journal of Geomechanics, 20(9). https://doi.org/10.1061/(asce)gm.1943-5622.0001762

Trading Economics. (2023). EU carbon permits - 2023. https://tradingeconomics.com/commodity/carbon

Vydehi, K., y Moghal, A. (2022). Effect of biopolymeric stabilization on the strength and compressibility characteristics of cohesive soil. Journal of Materials in Civil Engineering, 34(2). https://doi.org/10.1061/(asce)mt.1943-5533.0004068

Weil, R., y Brady, N. (2017). The nature and properties of soils. Pearson.

Publicado
2025-07-01
Como Citar
Arbulu, C., Solórzano Montesinos, A. W., & Solórzano Morales, M. P. (2025). Meta-análise da resistência à compressão não confinada de solos estabilizados com xantana. Ambiente, Comportamiento Y Sociedad, 7(2), 74 - 99. https://doi.org/10.51343/racs.v7i2.1523
Seção
REVISIONES SISTEMÁTICAS